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Why neurosymbolic AI?
(Some of) our success stories
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Applications in foundational
models

Ziyang Li, et al. Relational Programming with Foundation Models. In AAAI, 2024.
Hanlin Zhang, et al. Improved Logical Reasoning of Language Models via Differentiable Symbolic Programming. In ACL,
2023.
Joy Hsu, et al. What’s Left? Concept Grounding with Logic-Enhanced Foundation Models. In NeurIPS 2023.
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Applications in computer vision

Ziwei Xu, et al. Don’t Pour Cereal into Coffee: Differentiable Temporal Logic for Temporal Action Segmentation. In NeurIPS, 2022.
Jiuxiang Gu, et al. Scene Graph Generation with External Knowledge and Image Reconstruction. In CVPR, 2019.
Mark Endo, et al. Motion Question Answering via Modular Motion Programs. In ICML, 2023.
Davide Buffelli and Efthymia Tsamoura. Scalable Theory-Driven Regularization of Scene Graph Generation Models. In AAAI, 2023.
Leon Jonathan Feldstein, Jurčius Modestas, and Efthymia Tsamoura. Parallel neurosymbolic integration with Concordia. In ICML, 2023.
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About this talk

We will focus on weakly supervised learning using logic.
We will cover:

– Learnability.
– That has been an open problem.

– New challenges that don’t appear in traditional ML.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.
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Weakly-supervised learning
using logic

aka Multi-Instance Partial Label Learning (MI-PLL)

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.

August 5, 2024 LNSAI@IJCAI, 2024 6



MI-PLL
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MI-PLL

– Given:
– x1, . . . , xM ,

– trainable classifiers f1, . . . , fn,

– a target s = σ(y1, . . . , yM ), where yi’s are the predictions of the
classifiers on xi’s,

– learn f1, . . . , fn.
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MI-PLL: 2SUM
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σ(y1, y2) = y1 + y2 2

August 5, 2024 LNSAI@IJCAI, 2024 9



Challenges

– σ may not be 1-1.
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Challenges: σ may not be 1-1
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Challenges: σ may not be 1-1
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Challenges

– σ may not be 1-1.

– σ may be unknown.
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Challenges: σ may be unknown

f

f

y1

y2

σ(y1, y2) = αy1 + βy2

Parameters α and β are unknown.

5

– Learning under unknown weighted sums allows us to simultaneously
perform theory induction due to the relationship between integer linear
programming and Boolean satisfiability [32].
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Related work

– MI-PLL is topic of active research in NLP [12, 25, 27, 28, 33, 38, 42].

– Renewed attention in neurosymbolic learning
[9, 10, 13, 19, 23, 37, 43, 47].

– Applications in foundational models [20, 49].
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Visual QA (SIGMOD 2023)

Q(O)← NAME(herbivore,O)

NAME(N,O) ∧ NAME(N ′, O)→ ISA(N ′, N)

→ ISA(giraffe, herbivore)
→ ISA(dear, herbivore)

Table: Recall@5 on VQAR [13].

Testset LXMERT [34] RVC [11] TG-Guided VQA
C5 64.05% 74.62% 87.01%
C6 56.51% 72.04% 85.45%

Efthymia Tsamoura, Jaehun Lee, and Jacopo Urbani. Probabilistic Reasoning as Scale: Trigger Graphs to the Rescue. In
SIGMOD, 2023.
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On the power of σ

Our formulation is general enough to represent different languages, e.g.,
– non-linear functions.

– Systems of Boolean equations.

– Datalog.
Our formulation can express logical theories via backward reasoning [15].

Efthymia Tsamoura and Loizos Michael Neural-Symbolic Integration: a Compositional Perspective. In AAAI, pages
5051-5060, 2021.
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Benefits of our learning setting

The unique benefit over end-to-end neural models [41] is that it offers the
ability to reuse the latent models– particularly useful in NLP [25, 27].
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Objective

– Develop necessary and sufficient conditions that ensure classifier
learnability– will formally introduced the notion later.

– When σ is known, this condition is called M -unambiguity.
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Neurosymbolic losses

– Losses based on weighted model counting [4, 45].
– Losses based on fuzzy logic semantics [31, 39].
– Learning based on expectation maximization [19, 29].
– Learning via differentiation through argmax [25, 27].

We will not cover this topic in this talk.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.
Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On characterizing and mitigating imbalances in multi-instance weak
supervision. CoRR, abs/2407.10000, 2024.
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Notation

Supervised learning MI-PLL Meaning
x (given) x = x1, . . . , xM (given) input(s)
y (given) y = y1, . . . , yM (unknown) gold label(s)
- s = σ(y) (given) partial label
- σ (given) transition function
D DP training distribution (drawing M

independent samples from D)
[f ](x) [f ](x) prediction
ℓ01(y, y′) ··= 1{y ̸= y′} ℓ01σ (y, s) ··= 1{σ(y) ̸= s} zero-one (partial) loss
R01(f) ··= R01

P (f ;σ) ··=
E(X,Y )∼D[ℓ

01([f ](X), Y )] E(X,S)∼DP
[ℓ01σ ([f ](X), S)] zero-one (partial) risk
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Notation: 2SUM

f

f

y1

y2

2

0

σ(y1, y2) = y1 + y2 2

– σ(y1, y2) = y1 + y2.

– ℓ01σ (y1 = 2, y2 = 0, s = 2) = 0.

– ℓ01σ (y1 = 2, y2 = 1, s = 2) = 1.

– The partial risk R01
P (f ;σ) is the probability of predicting the wrong sum.
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PAC-style learnability

An MI-PLL problem instance is learnable, if there exists an algorithm A,
that takes as input partial samples and outputs a classifier A(TP) ∈ F ,
such that

– for any data distribution and

– any δ, ϵ ∈ (0, 1)

there is an integer mϵ,δ, such that mP ≥ mϵ,δ, where mP is the size of partial
samples, implies R01(A(TP)) ≤ ϵ with probability at least 1− δ.
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PAC-style learnability: informal definition

An MI-PLL problem instance is learnable, if for any user-defined
δ, ϵ ∈ (0, 1), it is highly likely (with probability at least 1− δ), that the learned
classifier does few mistakes (R01(A(TP)) ≤ ϵ), via using a large enough
number of training samples (mP ≥ mϵ,δ).
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Learnability: intuition

– To prove learnability of an MI-PLL problem instance, we must bound
R01(f) (zero-one risk) with R01

P (f ;σ) (zero-one partial risk), under any
training distribution.
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Learnability: intuition

– In other words, mistakes under the partial training samples, should be
informative of the classification errors made by f , under any training
distribution.
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Learning under the spike distribution: intuition

f

f

y1

y2

9

9

σ(y1, y2) = y1 + y2 9 + 9

– Suppose the mass is concentrated in a single element (gold label is 2).

– Suppose f misclassifies as 9.

– Then, the gold labels are (2, 2), but the classifier outputs (9, 9).

– If 2 + 2 = 9 + 9, then R01
P (f ;σ) = 0, while R01(f) ̸= 0.

– Hence, classifier errors are concealed.
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A sufficient and necessary learnability condition

Definition (M -unambiguity)

Transition σ is M -unambiguous if for any two label vectors y = (y, . . . , y) and
y′ = (y′, . . . , y′), such that y ̸= y′, we have σ(y) ̸= σ(y′).

Let’s map the definition to our example.

– Suppose the mass is concentrated in a single element (gold label is 2).

– Suppose f misclassifies as 9.

– Then, the gold labels are (2, 2), but the classifier outputs (9, 9).

– If 2 + 2 = 9 + 9, then R01
P (f ;σ) = 0, while R01(f) ̸= 0.

– Hence, classifier errors are concealed.
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M -unambiguity: example

Example (Sum of two digits)

Transition σ∗(y1, y2)→ y1 + y2 is M -unambiguous, since for any two
different integers y and y′, we have:

y + y ̸= y′ + y′
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M -unambiguity: example

Example (Product of two digits)

Transition σ∗(y1, y2)→ y1 × y2 is M -unambiguous, since for any two
different integers y and y′, we have:

y × y ̸= y′ × y′
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M -unambiguity: counter example

Example (XOR)

Transition σ∗(y1, y2)→ y1 ⊕ y2 is not M -unambiguous, since we have:

0⊕ 0 = 1⊕ 1
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Is M -unambiguity a good condition?

Definition (M -unambiguity)

Transition σ is M -unambiguous if for any two label vectors y = (y, . . . , y) and
y′ = (y′, . . . , y′), such that y ̸= y′, we have green σ(y) ̸= σ(y′).

– M -unambiguity: invertibility only under inputs of the same class.
– Looser conditions can be obtained when the input data distribution is

not a spike.
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Key result

Theorem. If σ is M -unambigous, then R01(f) ≤ O(R01
P (f ;σ)1/M ).
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Learnability under M -unambguity

Theorem
Suppose F is realizable under ℓ01P and [F ] has a finite Natarajan dimension d[F ]. Then for
any ϵ, δ ∈ (0, 1), there exists a universal constant C0 > 0, such that with probability at least
1− δ, the empirical partial risk minimizer with R̂01

P (f ;σ; TP) = 0 has a classification risk
R01(f) < ϵ, if

mP ≥ C0
c2M−2

ϵM

(
d[F ] log(6cMd[F ]) log

(
|Y|2M−2

ϵM

)
+ log

(
1

δ

))
Number of samples to ensure with probability ≥ 1− δ
that f does few mistakes (R01(A(TP)) ≤ ϵ)
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Summary of results

– Better convergence rates via forcing additional conditions.

– Learnability under multiple classifiers.

– Learnability under non-deterministic σ.

– Learnability under unknown σ.

– Rademacher error bounds under logic-based losses [45] based on
weighted model counting [4, 45].

– Error bounds under approximations [13].

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.
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MI-PLL vs other ML
problems
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Relevant problems in ML

– Partial label learning (PLL) [2, 8, 14, 22, 30, 44, 46, 48].

– Learning via transition matrices [6, 7, 40, 50].
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Example: PLL

f y σ(y) =

{
1 y is even
0 y is odd

1

⇕

( , {0, 2, 4, 6, 8} )

↑
Mutually exclusive candidate labels

← PLL training example
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Relationship of our problem to PLL

f

f

y1

y2

σ(y1, y2) = y1 + y2 2

⇕

( ( , ), {(0, 2), (2, 0), (1, 1)} )

↑
Mutually exclusive candidate label vectors

← MI-PLL training example
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Key differences with PLL

– Multiple vs single input.

– Deterministic vs stochastic σ.
– Prior learnability results ([2, 8, 21]) rely on assumptions that are

violated in our setting, i.e., that γ < 1, where

γ := sup
D(x, y)︸ ︷︷ ︸

density

>0,y′ ̸=y

probability noisy y′ co-occurs with y︷ ︸︸ ︷
P(x,y)∼D( y′︸︷︷︸

noisy label

∈ σ( y︸︷︷︸
gold label

))
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Key differences with PLL

– Multiple vs single input.

– Deterministic vs stochastic σ.
– Prior learnability results ([2, 8, 21]) rely on assumptions that are

violated in our setting, i.e., that γ < 1, where

γ := sup
D(x, y)︸ ︷︷ ︸

density

>0,y′ ̸=y

probability noisy y′ co-occurs with y︷ ︸︸ ︷
P(x,y)∼D( y′︸︷︷︸

noisy label

∈ σ( y︸︷︷︸
gold label

))

– M -unambiguity reduces to small ambiguity for single inputs (M = 1).

– Shown learnability under non-deterministic σ (proper extension of small ambiguity).
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Learning imbalances in
MI-PLL

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On characterizing and mitigating imbalances in multi-instance weak
supervision. CoRR, abs/2407.10000, 2024.
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Learning imbalances: what are they?

– Major differences in the errors occurring when classifying instances of
different classes (aka class-specific risks).
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Learning imbalances: 2MAX

f

f

y1

y2

0

0

max(y1, y2) 0

f

f

y1

y2

0, 1, . . . , 9

9, 9, . . . , 9

max(y1, y2) 9

Question: Which class is easier to learn if the number of ( ( , ), 0 ) samples equals the
number of ( ( , ), 9 ) samples.

Answer: Intuitively, class 0, as learning 0 reduces to supervised learning.
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Learning imbalances: 2MAX

f

f

y1

y2

0

0

max(y1, y2) 0

f

f

y1

y2

0, 1, . . . , 9

9, 9, . . . , 9

max(y1, y2) 9

Question: Which class is easier to learn if the number of ’s equals that of ’s.

Answer: We have more samples of the form ( ( , ), 9 ) than of the form ( ( , ), 0 ).
Hence, class 9 might be easier to learn?
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Learning imbalances: 2MAX
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Figure: Accuracy of the MNIST classifier. Blue, red and green curves show accuracy at
20, 40 and 100 epochs. Learning converges in 100 epochs.
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Learning imbalances in traditional machine learning

– Core ML problem [1, 3, 5, 16, 24, 26, 35, 36], as real data is
imbalanced.

– ML techniques cannot characterize imbalances in our setting:
– Work for long-tail data only– we also have imbalances due to σ.

Figure: Distribution of classes in Visual Genome [17].
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Learning imbalances: 2MAX

f

f

y1

y2

0

0

max(y1, y2) 0

f

f

y1

y2

0, 1, . . . , 9

9, 9, . . . , 9

max(y1, y2) 9

ML characterizations would naively say: it is equally difficult to learn classes 0 and 9 if the
instance distributions are uniform.
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Learning imbalances: theoretical characterization

– We bounded the class-specific risk Rj(f) via function:

Φ
σ , j

( RP(f ;σ) )

Transition, e.g., max Class

Probability of wrong overall output,
e.g., wrong maximum

– This bound is computed by solving a quadratic program.

Extends our previous results!
– Bound Φσ,j(RP(f ;σ)) does not rely on M -unambiguity.

– Tighter bounds than what we discussed already.
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Learning imbalances: theoretical characterization

– We bounded the class-specific risk Rj(f) via function:

Φ
σ , j

( RP(f ;σ) )

Transition, e.g., max Class

Probability of wrong overall output,
e.g., wrong maximum

– We can derive a computable bound for Rj(f) using a dataset of partial
sample and tools, such as VC-dimension and the Rademacher
complexity.
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Learning imbalances: theoretical characterization

Theorem
Let d[F ] be the Natarajan dimension of [F ], c = |Y|, and mP be the number of partial
samples. Given a confidence level δ ∈ (0, 1), we have that Rj(f) ≤ Φσ,j(R̃P(f ;σ, TP, δ))
with probability 1− δ for any label j ∈ [c], where

R̃P(f ;σ, TP, δ) = R̂P(f ;σ, TP) +

√
2 log(emP/2d[F ] log(6Mc2d[F ]/e))

mP/2d[F ] log(6Mc2d[F ]/e)
+

√
log(1/δ)

2mP

Generalization bound

Empirical partial risk

August 5, 2024 LNSAI@IJCAI, 2024 52



Learning imbalances: 2MAX

Figure: Class-specific upper bounds. (left) Partial labels are uniform. (right) Hidden labels
are uniform.
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Learning imbalances: testing-time mitigation

Classifier’s predictions P

y = 0 y = 9
0.1 0.05

0.7 0.01 Predictions for the i-th

test sample

0.01 0.8



Rationale.
Given a (gold) hidden label distribution r̂, correct
the predictions P to P ′, so that P ′ adheres to r̂.
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Learning imbalances: testing-time mitigation

Classifier’s predictions P

y = 0 y = 9
0.1 0.05
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Rationale.
Given a (gold) hidden label distribution r̂, correct
the predictions P to P ′, so that P ′ adheres to r̂.

Challenges.
– The developed technique should be

lightweight.

– P ′ should be close enough to P .

– P ′ should not strictly abide to r̂ (to tolerate
noise).
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Learning imbalances: testing-time mitigation

Rationale. Given a (gold) hidden label distribution r̂, correct the predictions P to P ′, so
that P ′ adheres to r̂.

Challenges:
– The developed technique should be lightweight.
– P ′ should be close enough to P .
– P ′ should not strictly abide to r̂ (to tolerate noise).

min
P ′∈Rn×c

+ , P ′1c=1n

⟨− log(P ),P ′⟩ + τKL(P ′1n||nr̂ ) (1)

P ′ induces a valid distribution

Closeness to original predictions Robustness to r̂
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Learning imbalances: testing-time mitigation

– This formulation is a robust semi-constrained optimal transport (RSOT)
problem instance [18].

– Approximate the optimal solution using the robust semi-Sinkhorn
algorithm [18].

min
P ′∈Rn×c

+ , P ′1c=1n

⟨− log(P ),P ′⟩ + τKL(P ′1n||nr̂ ) − ηH(P ′)

P ′ induces a valid distribution

Closeness to original predictions Robustness to r̂

Entropic regularization to find solutions in PTIME.
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Learning imbalances: more results

– Statistically consistent technique to compute the hidden label ratios r̂.

– Technique to mitigate learning imbalances at training-time.

– Improved the accuracy on multiple benchmarks by > 20%.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On characterizing and mitigating imbalances in multi-instance weak
supervision. CoRR, abs/2407.10000, 2024.
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Conclusions

August 5, 2024 LNSAI@IJCAI, 2024 59



Keywords (instead of conclusions)

– Applications.

– Scalability.

– Uncertainty– many proposals, what is the right semantics?

– Formal guarantees.

Efthymia Tsamoura, et al. Probabilistic Reasoning at Scale: Trigger Graphs to the Rescue. In SIGMOD, 2023.
Efthymia Tsamoura, et al. Materializing Knowledge Bases via Trigger Graphs. In VLDB, 2021.
Efthymia Tsamoura, et al. Beyond the Grounding Bottleneck: Datalog Techniques for Inference in Probabilistic Logic
Programs. In AAAI, 2020.
Michael Benedikt, Boris Motik, and Efthymia Tsamoura. Goal-Driven Query Answering for Existential Rules With Equality. In
AAAI, 2018.
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Thanks!
Contact info: efthymia.tsamoura@gmail.com.
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Relevant problems in ML

– Partial label learning (PLL) [2, 8, 14, 22, 30, 44, 46, 48].

– Learning via transition matrices [6, 7, 40, 50].
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Learning via transition matrices

Definition (Transition matrix [6, 40])

A transition matrix T for a learning problem with hidden label Y ∈ Y and observed label
S ∈ S is a stochastic matrix, where the element in its ith column and jth row is the
conditional probability P (S = j|Y = i).

T =

y = 1 y = i y = |Y|


s = 1 P(S = 1|Y = 1)

...
s = j P(S = j|Y = i)

...
s = |S| P(S = |S||Y = |Y|)
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Learning via transition matrices

– If the transition is invertible, then we can compute the hidden data
distribution via its association with the observed data distribution.
Hence, we construct an unbiased estimator for the classification loss.

o(x)︸︷︷︸
[P(S=1|x),...,P(S=|S||x)]

=

Transition matrix︷ ︸︸ ︷
T (x) h(x)︸︷︷︸

[P(Y=1|x),...,P(Y=|Y||x)]

h(x)︸︷︷︸
[P(Y=1|x),...,P(Y=|Y||x)]

=

Transition matrix left inverse︷ ︸︸ ︷
T+(x) o(x)︸︷︷︸

[P(S=1|x),...,P(S=|S||x)]
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Results

– Reduction of MI-PLL to learning via transition matrices is not
straightforward: naive reductions lead to non-invertible matrices :)

– For non-naive reductions, we have:
– M -unambiguity ̸⇒ matrix invertibility.

– Matrix inveritbility ̸⇒M -unambiguity.

Kaifu Wang, Efthymia Tsamoura, and Dan Roth. On learning latent models with multi-instance weak supervision. In
NeurIPS, 2023.
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