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Abstract. A cluster of servers is often used to reason over RDF graphs
whose size exceeds the capacity of a single server. While many distributed
approaches to reasoning have been proposed, the problem of data parti-
tioning has received little attention thus far. In practice, data is usually
partitioned by a variant of hashing, which is very simple, but it does not
pay attention to data locality. Locality-aware partitioning approaches
have been considered, but they usually process the entire dataset on a
single server. In this paper, we present two new RDF partitioning strate-
gies. Both are inspired by recent streaming graph partitioning algorithms,
which partition a graph while keeping only a small subset of the graph in
memory. We have evaluated our approaches empirically against hash and
min-cut partitioning. Our results suggest that our approaches can signif-
icantly improve reasoning performance, but without unrealistic demands
on the memory of the servers used for partitioning.

1 Introduction

The Resource Description Framework (RDF) is a popular data format, where
triples represent relationships between resources. The Web Ontology Language
(OWL) is layered on top of RDF to structure the data and support reasoning :
a reasoner can derive fresh triples using domain knowledge. Thus, developing
efficient reasoning algorithms for RDF has received considerable attention.

A popular way to realise OWL reasoning is to encode the rules of inference
in a prominent rule-based formalism called datalog. For example, the OWL 2 RL
profile is a fragment of OWL designed to support datalog reasoning. Datalog
reasoning is often implemented in practice by materialisation: all consequences
of the data and the rules are precomputed in a preprocessing step so that queries
can later be evaluated without any further processing of the rules.

Modern RDF datasets can be very large; for example, the UniProt1 dataset
contains over 34 billion triples. Complex reasoning over such large datasets is in-
feasible on a single server, so a common solution is to partition the data in a clus-
ter of shared-nothing servers. Many such approaches for RDF querying have been

1 https://www.uniprot.org/
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proposed [13, 23, 11, 30, 12, 16, 28, 4, 10, 22]. Reasoning is more involved since it
requires interleaving queries and updates, but nevertheless several distributed
RDF reasoners have been developed [24, 27, 26, 9, 17, 29].

Rule application during reasoning requires distributed join processing, which
can be costly if the triples to be joined are stored in different servers; moreover,
derived triples need to be distributed across the cluster. Thus, data should ideally
be partitioned in a locality-aware way to minimise overheads. Little attention has
been paid thus far to the data partitioning problem. Systems based on Hadoop
and Spark store the data in a distributed file system and thus typically cannot
influence data placement. Systems that explicitly control data placement usually
determine a triple’s destination by hashing some or all of the triple’s components
(usually the subject). Hashing is very simple to implement and requires little
resources, but it can incur significant overhead, particularly for subject–object
and object–object joins. Other systems use min-cut graph partitioning [15] to
obtain locality-aware partitions; however, this usually requires loading all data
into a single server, which defeats the main goals of using a cluster.

Streaming methods aim to produce good graph partitions without loading
the entire graph into memory at any point in time (but by possibly reading
the graph data several times). Such techniques have been developed primarily
for general graphs, rather than RDF. Motivated by the desire to improve the
performance of distributed RDF reasoners, in this paper we adapt the HDRF [21]
and 2PS [19] state-of-the-art streaming graph partitioning algorithms to RDF.
Unlike HDRF and 2PS, our HDRF3 and 2PS3 algorithms have to take into
account certain idiosyncrasies of the RDF data model. For example, it is well
known that subject–subject joins are very common in RDF queries, so colocating
triples with the same subject is really important in RDF; however, honouring
this requires modifications to HDRF and 2PS.

By comparing our approaches empirically with hash and min-cut partition-
ing, we investigated how different data partitioning strategies affect reasoning
times and network communication. We based our evaluation on the DMAT dis-
tributed datalog reasoner [3]. The reasoning algorithm of DMAT is unique in
that it is independent of any specific data partitioning strategy: as long as a
certain index is provided that informs the system of how data is distributed in
the cluster, the algorithm can correctly compute the materialisation.

We show empirically that partitioning the data into highly connected sub-
sets can be very effective at reducing communication and thus reducing rea-
soning times; however, it can also lead to workload imbalances among servers,
which can lead to increases in reasoning when the communication overhead is
small. Overall, our 2PS3 method seems to be very effective: while requiring only
modest resources for partitioning, it can more than halve the reasoning times
compared to hash partitioning. Thus, we believe our technique provides an im-
portant building block of truly scalable distributed RDF reasoners.

The proofs of our results, all datasets and rule sets used for testing, and the
DMAT system are available as online supplementary material.2

2 https://krr-nas.cs.ox.ac.uk/2021/stream-graph-partitioning/
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2 Preliminaries

We next recapitulate some common definitions. An RDF graph G is a finite
set of triples of the form 〈s, p, o〉, where s, p, and o are resources (i.e., IRIs,
blank nodes, or literals) called subject, predicate, and object, respectively. The
vocabulary of G is the set of all resources occurring in G. Given a resource
r, let G+(r) = {〈s, p, o〉 ∈ G | s = r} and G(r) = {〈s, p, o〉 ∈ G | s = r or o = r}.
We call |G+(r)| and |G(r)| the out-degree and the degree of r, respectively.

A partition P of an RDF graphG is a list of RDF graphs P = G1, . . . , Gn such
that Gi ∩Gj = ∅ for 1 ≤ i < j ≤ n and G =

⋃n
i=1Gi. We call graphs Gi partition

elements. The replication set of a resource r is A(r) = {k | Gk ∩G(r) 6= ∅}. For
V the vocabulary of G, the replication factor of a partition P is defined as

RF(G,P) =
1

|V |
∑
r∈V
|A(r)|.

Given a fixed tolerance parameter α ≥ 1, the objective of graph partitioning is

to compute a partition P of G such that |Gi| ≤ α |G|n holds for each 1 ≤ i ≤ n,
while minimising the replication factor RF(G,P). Thus, each Gi should hold
roughly the same number of triples, while ensuring that resources are replicated
as little as possible. Solving this problem exactly is computationally hard, so
the objective is usually weakened in practice. The algorithms we present in this
paper will honour the restrictions on the sizes of Gi; moreover, they will aim to
make the replication factor small, but without minimality guarantees.

A datalog rule is an expression of the form H ← B1, . . . , Bn, where H and
Bi are atoms of the form 〈ts, tp, to〉, and ts, tp, and to are variables or resources.
Atom H is called the head, and B1, . . . , Bn are called the rule body. A substi-
tution σ is a mapping of variable to resources, and Aσ denotes the result of
replacing each variable in atom x with σ(x). A rule is applied to an RDF graph
G by enumerating each substitution σ such that {B1σ, . . . , Bnσ} ⊆ G, and then
extending G with Hσ. To compute the materialisation of G for a set of data-
log rules P , this process is iteratively repeated for each rule r ∈ P as long as
possible—that is, until no new triples can be derived. In this work, we study
how different partitioning strategies affect the performance of computing the
materialisation when the RDF data is partitioned across a cluster of servers.

3 Related Work

In this section, we present an overview of the related approaches to distributed
querying, distributed reasoning, and RDF data partitioning.

Distributed Query Processing. To compute a join in a distributed setting,
facts participating in the join must be brought to a server in the cluster. Many
solutions to this key technical problem have been developed. Numerous systems
(e.g., HadoopRDF [13] and S2RDF [23], to name a few) are built on top of big
data frameworks such as Hadoop or Spark. Systems such as YARS2 [11] and
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Trinity.RDF [30] compute joins on a single server after retrieving data from the
cluster. Systems such as H-RDF-3X [12], SHAPE [16], and SemStore [28] split a
query into parts that can be evaluated without communication, and then com-
bine the partial answers in a final join phase. Finally, systems such as AdPart [4]
and TriAd [10] compute distributed joins by exchanging partial answers between
servers. Recently, 22 systems were surveyed and 12 of those were compared ex-
perimentally [1], and TriAd and AdPart were identified as fastest. The dynamic
data exchange [22] approach was later shown to be also very competitive.

Distributed Reasoning. Matching rule bodies corresponds to query evalu-
ation, so distributed reasoning includes distributed querying; however, it also
involves distributed data updates, which introduces additional complexity. So-
ciaLite [24] handles datalog extended with a variant of monotonic aggregation.
Many distributed RDF reasoners can handle only limited datalog subsets [5]. For
example, RDFS reasoning can be performed without any communication [27].
WebPIE [26] handles the OWL-Horst fragment using Hadoop, while CiChild [9]
and SPOWL [17] handle the OWL-Horst and the OWL 2 RL fragments, respec-
tively, in Spark. PLogSpark [29], also implemented in Spark, is one of the few
distributed RDF reasoners that can handle arbitrary datalog rules.

DMAT. Our DMAT system [3] supports distributed seminäıve evaluation of
arbitrary datalog rules by extending the distributed query answering technique
by Potter et al. [22]; the system uses RDFox [20] for triple storage, indexing,
and retrieval. DMAT uses an index to locate the relevant data in the cluster,
allowing it to be used with any partitioning strategy. This is different from most
existing approaches, where the reasoning algorithms depend on the details of
data partitioning. We use DMAT in our evaluation since it allows us to vary
the partitioning strategies only and study how this affects the performance of
reasoning. While the absolute reasoning times are specific to DMAT, the number
of joins that span servers are the same for all implementations, so other systems
should exhibit similar relative performance for different partitioning strategies.

Data Partitioning. Although it is intuitive to expect that partitioning the
data carefully to minimise communication should improve the performance of
distributed systems, the effects of data partitioning remain largely unknown. Ex-
isting approaches to data partitioning can be broadly divided into three groups.
The first groups consists of systems that use Hadoop or Spark to store their data
in a distributed file system. The data is usually allocated randomly to servers,
which makes exploiting data locality during querying/reasoning difficult. The
second group consists of hash-based variants, where the destination for a triple
is determined by hashing one or more triple’s components (usually subject).
The third group consists of variants based on min-cut graph partitioning [15],
which aims to minimise the number of edges between partitions and thus re-
duce the cost of communication. Such approaches are sometimes combined with
data replication (e.g., [12, 10]), where a triple is stored on more than one server.
All systems in the latter two groups colocate triples with the same subjects to
eliminate communication for the most common subject–subject joins [8].
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4 Motivation and Our Contribution

Distributed reasoning requires network communication for evaluating rule bodies
and for distributing the derived triples, and communication is much slower than
RAM access. One can thus intuitively expect that communication will critically
determine the performance of reasoning, and that, to reduce communication and
thus improve performance, joining triples are colocated whenever possible.

Janke et al. [14] studied this problem for distributed query processing. In-
terestingly, they concluded that reducing communication can be detrimental if
done at the expense of uneven server workload. However, it is unclear to what
extent this study applies to reasoning. Reasoning over large datasets involves
evaluating millions of queries and distributing derived triples, both of which can
incur much more communication than for evaluating a single query. Moreover,
imbalances in single queries could even out over all queries.

Another question is how to effectively partition RDF data in a locality-aware
way. As we mentioned in Section 3, subject hashing is commonly used in practice;
while very efficient, it does not take the structure of an RDF graph into account
and thus provides no locality guarantees for subject–object or object–object
joins. Other commonly used approaches are based on min-cut partitioning. The
METIS partitioner requires loading the entire graph into a single server, which
is clearly problematical. This problem can be mitigated by using the parallelised
version of METIS called ParMETIS; however, graph partitioning is an NP-hard
problem, so such a solution is still likely to use considerable resources.

Thus, how to partition RDF data effectively, and how this affects distributed
reasoning, is still largely unknown. To answer the former question, we draw
inspiration from recent work on streaming graph partitioning [25, 21, 31, 6, 2, 18,
19] methods, which process the graph edges a fixed number of times without
ever storing the entire graph in memory. The memory used by these algorithms
is often proportional to the number of graph vertices, which is usually at least
an order of magnitude smaller than the number of edges.

These approaches seem to provide a good basis for RDF partitioning, but
they are are typically formulated for general (directed or undirected) graphs.
Several RDF-specific issues must be taken into account to obtain adequate par-
titions in the context of RDF. For example, colocating triples with the same
subject was shown to be crucial for practical applications (cf. Section 3). Thus,
in Sections 5 and 6, we present two new streaming RDF partitioning techniques,
which we obtain from the state-of-the-art algorithms HDRF [21] and 2PS [19].
The idea behind the former is to prefer replicating vertices of higher degree so
that a smaller number of vertices has to be replicated overall, and the idea behind
the latter is to assign to each server communities of highly connected vertices.

In Section 7 we empirically investigate the connection between data parti-
tioning and reasoning performance. To this end, we compare the performance
of reasoning for different data partitioning strategies: our two new techniques,
subject hash partitioning, and a variant of min-cut partitioning [22]. Our results
suggest that data partitioning can indeed have a significant impact on reasoning
performance, sometimes cutting the reasoning times to less than half.



6 T. Ajileye et al.

5 The HDRF3 Algorithm

We now present our HDRF3 algorithm for streaming partitioning of RDF data.
We follow the ‘high degree replicated first’ principle from the HDRF algorithm
for general graphs [21]. In Section 5.1 we briefly discuss the original idea, and in
Section 5.2 we discuss in detail how we adapted these principles to RDF.

5.1 High Degree Replicated First Streaming Partitioning

The HDRF algorithm [21] targets large undirected graphs whose vertex degree
distribution resembles the power-law distribution. The algorithm aims to repli-
cate (i.e., assign to more than one server) vertices with higher degrees, so that a
smaller number of vertices is replicated overall. It processes sequentially the edges
of the input graph and assigns them to servers. For each server k ∈ {1, . . . , n},
the algorithm maintains the number Nk of eges currently assigned to server k;
all Nk are initially zero. For each vertex v, the algorithm maintains the degree
deg(v) of v in the subgraph processed thus far, and the replication set A(v) for
v. For each v, the degree deg(v) is initialised to zero, and A(v) is initialised to
the empty set. To allocate an undirected edge {v, w}, the algorithm first incre-
ments deg(v) and deg(w), and then for each candidate server k ∈ {1, . . . , n} it
computes the score C(v, w, k). The algorithm sends the edge {v, w} to the server
k with the highest score C(v, w, k), and it increments Nk.

The score C(v, w, k) consists of two parts. The first one estimates the impact
that placing {v, w} on server k will have on replication, and it is computed as

CREP (v, w, k) = g(v, w, k) + g(w, v, k), where

g(v, w, k) =

{
1 + deg(w)

deg(v)+deg(w) if k ∈ A(v),

0 otherwise.

To understand the intuition behind this formula, assume that vertex v occurs
only on server k, vertex w occurs only server k′, and deg(v) > deg(w). Then,
we have g(v, w, k) < g(w, v, k′), which ensures that edge {v, w} is sent to server
k′—that is, vertex v is replicated to server k′, in line with our desire to repli-
cate higher-degree vertices. The sum deg(v) + deg(w) in the denominator of the
formula for g(v, w, k) is used to normalise the degrees of v and w.

Considering CREP (v, w, k) only would risk producing partitions of unbal-
anced sizes. Therefore, the second part of the score is used to favour assigning
edge {v, w} to the currently least loaded server using formula

CBAL(k) =
maxsize −Nk

ε+ maxsize −minsize
,

where maxsize and minsize are the maximal and minimal possible partition sizes.
Scores CREP (v, w, k) and CBAL(k) are finally combined using a fixed weight-

ing factor λ as
C(v, w, k) = CREP (v, w, k) + λ · CBAL(k)
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By tuning λ, we can determine how important is minimising imbalance in par-
tition sizes as opposed to achieving low replication factors.

The version of the algorithm presented above makes just one pass over the
graph edges, and g(v, w, k) and g(w, v, k) are computed using the partial vertex
degrees (i.e., degrees in the subset of the graph processed thus far). The authors
of HDRF also discuss a variant where exact degrees are computed in a prepro-
cessing pass. The authors also show empirically that this does not substantially
alter the quality of the partitions that the algorithm produces.

5.2 Adapting the Algorithm to RDF Graphs

Several problems need to be addressed to adapt HDRF to RDF graphs. A minor
issue is that RDF triples correspond to labelled directed edges, which we ad-
dress by simply ignoring the predicate component of triples. A more important
problem is to ensure that all triples with the same subject are colocated on a
single server, which, as we already mentioned in Section 4, is key to ensuring
good performance of distributed RDF systems. To address this, we compute the
destination for all triples with subject s the first time we see such a triple.

The pseudo-code of HDRF3 is shown in Algorithm 1. It takes as input a
parameter α determining the maximal acceptable imbalance in partition element
sizes, the balance parameter λ as in HDRF, and another parameter δ that we
describe shortly. In a preprocessing pass over G (not shown in the pseudo-code),
the algorithm determines the size of the graph |G|, and the out-degree |G+(r)|
and the degree |G(r)| of each resource r inG. The algorithm also maintains (i) the
replication set A(r) for each resource, which is initially empty, (ii) a mapping T
of resources occurring in subject position to servers, which is initially undefined
on all resources, and (iii) the numbers N1, . . . , Nn and R1, . . . , Rn of triples and
resources, respectively, assigned to servers thus far, which are initially zero.

The algorithm makes a single pass over the graph and processes each triple
〈s, p, o〉 ∈ G using the function ProcessTriple. Mapping T keeps track of the
servers that will receive triples with a particular subject resource. Thus, if T (s)
is undefined (line 2), the algorithm sets T (s) to the server with the highest
score (line 3) in a way analogous to HDRF. All triples with the same subject
encountered later will be assigned to server T (s), so counter NT (s) is updated
with the out-degree of s (line 4). Finally, the triple is sent to server T (s) (line 5),
and the replication sets of s and o and the number of resources RT (s) on server
T (s) are updated if needed (lines 6 and 7).

The score of sending triple 〈s, p, o〉 to server k is calculated as in HDRF. The
replication part CREP of the score is computed in lines 11 and 13. Unlike the
original HDRF algorithm, we assign all triples with subject s to a server the
first time we encounter resource s, so having complete degree is important to
take into account the impact of further triples with the same subject. Moreover,
we observed empirically that it is beneficial for the performance of reasoning to
have partition elements with roughly similar average resource degrees. Function
Deg estimates the current average degree of resources in server k as a quotient
of the currently numbers of triples (Nk) and resources (Rk) assigned to server
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Algorithm 1 HDRF3

Require: tolerance parameter α > 1
the balance parameter λ
the degree imbalance parameter δ
the target number of servers n
|G|, |G+(r)|, and |G(r)| for each resource r in G are known
A(r) := ∅ for each resource r in G
Mapping T of resources to servers, initially undefined on all resources
Nk := Rk := 0 for each server k ∈ {1, . . . , n}

1: function ProcessTriple(s, p, o)
2: if T (s) is undefined then
3: T (s) := arg maxk∈{1,...,n} Score(s, o, k)

4: NT (s) := NT (s) + |G+(s)|
5: Add (s, p, o) to GT (s)

6: if T (s) 6∈ A(s) then Add T (s) to A(s) and increment RT (s)

7: if T (s) 6∈ A(o) then Add T (s) to A(o) and increment RT (s)

8: function Score(s, o, k)
9: CREP := 0

10: if k ∈ A(s) and Deg(k) ≤ min`∈{1,...,n}Deg(`) + δ then

11: CREP := CREP + 1 + |G(o)|
|G(s)|+|G(o)|

12: if k ∈ A(o) and Deg(k) ≤ min`∈{1,...,n}Deg(`) + δ then

13: CREP := CREP + 1 + |G(s)|
|G(s)|+|G(o)|

14: CBAL := 1− nNk′+|G+(s)|
α|G|

15: return CREP + λ
∑

k Nk

|G| CBAL

16: function Deg(k)
17: return (Rk = 0) ? 0 : Nk/Rk

k. Then, in lines 11 and 13, CREP is updated only if the average degree of server
k is close (i.e., within δ) to the minimal average degree.

The balance factor is computed in line 14, and it is obtained by taking into
account that the maximum size of a partition element is α|G|/n.

Finally, CREP and CBAL are combined using λ in line 15. However, unlike

the original HDRF algorithm, factor
∑

k Nk

|G| ensures that partition balance grows

in importance towards the end of partitioning.

As we mentioned in Section 2, producing a balanced partition while minimis-
ing the replication factor is computationally hard, so the minimality requirement
is typically dropped. The following result shows that Algorithm 1 honours the
balance requirements, provided that α and λ are chosen in a particular way.
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Proposition 1. Algorithm 1 produces a partition that satisfies |Gi| ≤ α |G|n for
each 1 ≤ i ≤ n whenever α and λ are selected such that

α > 1 + n
maxr |G+(r)|

|G|
and λ ≥ 4α

n
(
α−1
n −

maxr |G+(r)|
|G|

)2 .
6 The 2PS3 Algorithm

We now present our 2PS3 algorithm for RDF, which adapts the two-phase
streaming algorithm 2PS [19]. In Section 6.1 we discuss the original idea, and in
Section 6.2 we discuss in detail how to apply these principles to RDF.

6.1 Two-Phase Streaming

The 2PS algorithm processes undirected graphs in two phases. In the first phase,
the algorithm clusters resources into communities with the goal of placing highly
connected resources into a single community. This is achieved by initially assign-
ing each resource in the graph to a separate community. Then, when processing
an edge {v, w} in the first phase, the current sizes of the current communities of
v and w are compared, and the resource belonging to the smaller community is
merged into the larger community. Thus, communities are iteratively coarsened
as edges of the input graph are processed in the first phase. The entire first phase
can be repeated several times to improve community detection.

After all edges are processed in the first phase, the identified communities are
greedily assigned to servers. Then, the graph is processed in the second phase,
and edges are assigned to the communities of their vertices.

6.2 The Algorithm

Just like in the case of HDRF, the main challenge in extending 2PS to RDF is
to deal with the directed nature of RDF triples, and to ensure that triples with
the same subject are assigned to the same server.

The pseudo-code of 2PS3 is shown in Algorithm 2. As in HDRF3, the al-
gorithm uses a preprocessing phase to determine the size of graph |G| and the
out-degree |G+(r)| of each resource. Thus, 2PS3 uses three phases; however, to
stress the relationship with the 2PS algorithm, we call the algorithm 2PS3.

The algorithm maintains a global mapping C of resources to communities—
that is, C(r) is the community of each resource r. Thus, two resources r1 and r2
are in the same community if C(r1) = C(r2). Initially, each resource r is placed
into its own community cr. As the algorithm progresses, the image of C will
contain fewer and fewer communities. Once communities are assigned to servers,
a triple 〈s, p, o〉 will be assigned to the server of community C(s), thus ensuring
that all triples with the same subject are colocated.

The algorithm also maintains a global function that maps each community
c to its size S(c). Please note that S(c) does not hold the number of resources
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Algorithm 2 2PS3

Require: tolerance parameter α > 1
the target number of servers n
|G| and |G+(r)| for each resource r in G are known
C(r) := cr and S(cr) := |G+(r)| for each resource r in G, where

cr is a community unique for r

18: function ProcessTriple-Phase-I(s, p, o)
19: Let rmax := arg maxr∈{s,o} S(C(r)), and let rmin be the other vertex

20: if S(C(rmax)) + |G+(rmin)| < (α− 1) |G|
n

then
21: S(C(rmax)) := S(C(rmax)) + |G+(rmin)|
22: S(C(rmin)) := S(C(rmin))− |G+(rmin)|
23: C(rmin) := C(rmax)

24: function AssignCommunities
25: Nk := 0 for each server k ∈ {1, . . . , n}
26: for each community c occurring in the image of the mapping C do
27: T (c) := arg mink∈{1,...,n} |Nk|
28: NT (c) := NT (c) + S(c)

29: function ProcessTriple-Phase-II(s, p, o)
30: Add (s, p, o) to T (C(s))

currently assigned to community c; rather, S(c) provides us with the number
of triples whose subject is assigned to community c. Because of that, S(cr) is
initially set to |G+(r)| for each resource r, rather than to 1.

After initialisation, the algorithm processes each triple 〈s, p, o〉 ∈ G using
function ProcessTriple-Phase-I. In line 19, the algorithm compares the sizes
S(C(s)) and S(C(o)) of the communities to which s and o, respectively, are cur-
rently assigned. It identifies rmax as the resource whose current community size
is larger, and rmin as the resource whose current community size is smaller (ties
are broken arbitrarily). The aim of this is to move rmin into the community of
rmax, but this is done only if, after the move, we can satisfy the requirement
on the sizes of partition elements: if each community contains no more than

(α − 1) |G|n triples, we can later assign communities to servers greedily and the

resulting partition elements will contain fewer than α |G|n triples. This is reflected
in the condition in line 19: if satisfied, the algorithm updates the sizes of the
communities of rmax and rmin (lines 21–22), and it moves rmin into the com-
munity of rmax (line 23). If desired, G can be processed repeatedly several times
using function ProcessTriple-Phase-I to improve the communities.

Once all triples of G are processed, function AssignCommunities assigns
communities to servers. To this end, for each server k, the algorithm maintains
the number Nk of triples currently assigned to partition element k. Then, the
communities from the image of C (i.e., the communities that have ‘survived’
after shuffling the resources in the first phase) are assigned by greedily preferring
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the least loaded server. Finally, using function ProcessTriple-Phase-II, each
triple 〈s, p, o〉 ∈ G is assigned to the server of community C(s).

As in HDRF3, our algorithm is not guaranteed to minimise the replication
factor. However, the following result shows that the algorithm will honor the
restriction on the sizes of partition elements for a suitable choice of α.

Proposition 2. Algorithm 2 produces a partition that satisfies |Gi| ≤ α |G|n for
each 1 ≤ i ≤ n whenever α is selected such that

α > 1 +
maxr |G+(r)|

|G|
.

7 Evaluation

To see how partitioning affects distributed reasoning, we computed the materi-
alisation for three large datasets, which we partitioned using subject hash parti-
tioning (Hash), a variant of min-cut partitioning [22] (METIS), and our HDRF3

and 2PS3 algorithms. We introduce our datasets in Section 7.1; we present the
test protocol in Section 7.2; and we discuss our results in Section 7.3.

7.1 Datasets

Apart from the well-known LUBM3 benchmark, we are unaware of publicly avail-
able large RDF datasets that come equipped with complex datalog programs.
Thus, we manually created programs for two well-known large datasets. All pro-
grams and datasets are available from the Web page from the introduction, and
some statistical information about the datasets is shown in Table 1.

LUBM-8K We used the LUBM dataset for 8,000 universities, containing 1.10
billion triples. Moreover, we used the extended lower bound datalog program by
Motik et al. [20]. The program was constructed to stress-test reasoning systems,
and it was obtained by translating the the OWL 2 RL portion of the LUBM
ontology into datalog and manually adding several hard recursive rules that
produce many redundant derivations. To the best of our knowledge, this program
has not yet been used in the literature to test distributed RDF reasoners.

WatDiv-1B The WatDiv4 benchmark was developed as a test for SPARQL
querying. We used the 1.09 billion triples provided by the creators of WatDiv.
Since WatDiv does not include an ontology or datalog program, we manually
produced a program consisting of 32 chain, cyclical, and recursive rules.

MAKG∗ The Microsoft Academic Knowledge Graph (MAKG) [7] is an RDF
translation of the Microsoft Academic Graph—a heterogeneous dataset of sci-
entific publication records, citations, authors, institutions, journals, conferences,
and fields of study. The original MAKG dataset contains 8 billion triples and

3 http://swat.cse.lehigh.edu/projects/lubm/
4 https://dsg.uwaterloo.ca/watdiv/
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Table 1. Datasets & Programs

Dataset
Dataset Stats Program Stats Mat. Stats

λtriples res. deg. rules recr. avg. triples der.
(G) (M) body (G) (G)

LUBM-8K 1.10 260 4.21 103 3 1.20 2.66 63.45 819

WatDiv-1B 1.09 100 11.29 32 2 2.10 1.77 2.09 800

MAKG∗ 3.67 490 7.48 15 2 2.20 5.63 17.47 800

Legend: res. = #resources; deg. = triples/res.; recr. = #recursive rules; avg.
body = average #body atoms; der. = #derivations; λ = a HDRF3 parameter

includes links to datasets in the Linked Open Data Cloud. To obtain a more
manageable dataset, we selected a subset, which we call MAKG∗, of 3.67 billion
core triples. Since MAKG does not have an ontology, we manually created a
datalog program consisting of 15 chain, cyclical, and recursive rules.

7.2 Test Protocol

As mentioned in Section 3, our DMAT system can be used with an arbitrary data
partitioning strategy, so it provides us with an ideal testbed for our experiments.
We ran our experiments on the Amazon EC2 cloud, with servers connected by
10 Gbps Ethernet. To compute the materialisation, we used ten servers of the
r5 family, each equipped with a 2.3 GHz Intel Broadwell processor and 128 GB
of RAM; the latter was needed since DMAT stores all data in RAM. We used
an additional, smaller coordinator server to store the dictionary (i.e., mapping
of resources to integers) and distribute the datalog program and the graphs to
the cluster; this server did not participate in reasoning. Finally, we used another
server with 784 GB of RAM to partition the data using METIS.

To speed up loading times, we preprocessed all datasets by replacing all
resources with integers. The coordinator distributed the triples to the workers
for Hash, HDRF3, and 2PS3; for METIS, we loaded the precomputed partitions
directly into the workers. To hash the triples’ subjects, we simply multiplied the
integer subject value by a large prime in order to randomise the distribution
of the subjects. In our algorithms, we used α = 1.25. With HDRF3, we used
δ = 0.25 and we set λ to the lowest value satisfying Proposition 1; the values of
λ thus vary for each dataset and are shown in Table 1. Finally, with 2PS3, we
processed the graphs twice in the first phase. After loading the dataset and the
program into all servers, we computed the materialisation while recording the
wall-clock time and the total number of messages sent between the servers.

7.3 Test Results & Discussion

For each of the four partitioning strategies, Table 2 shows the minimum, maxi-
mum, and median numbers of triples in partition elements, given as percentages
of the overall numbers of triples. The table also shows the replication factor
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(see Section 2 for a definition) and the time needed to compute the partitions.
Finally, the table shows the reasoning times and the numbers of messages.

Partition Times and Balance All partitioning schemes produced partition
elements with sizes within the tolerance parameters: Hash achieves perfect bal-
ance if the hash function is uniform; METIS explicitly aims to equalise partition
sizes; and our two algorithms do so by design and the choice of parameters. For
all streaming methods, the partitioning times were not much higher than the
time required to read the datasets from disk and send triples to their designated
servers. In contrast, METIS partitioning took longer than materialisation on
LUBM-8K and WatDiv-1B, and on MAKG∗ it ran out of memory even though
we used a very large server equipped with 784 GB of RAM.

Replication, Communication, and Reasoning Times Generally lowest
replication factors were achieved with 2PS3: only METIS achieved a lower value
on WatDiv-1B, and HDRF3 achieved a comparable value on MAKG∗. The repli-
cation factor of Hash was highest in all cases, closely followed by HDRF3. More-
over, lower replication factors seem to corelate closely with decreased communi-
cation overhead; for example, the number of messages was significantly smaller
on LUBM-8K and MAKG∗ with 2PS3 than with other schemes. This reduction
seems to generally lead to a decrease in reasoning times: 2PS3 was the fastest
than the other schemes on LUBM-8K and MAKG∗; for the former, the improve-
ment over Hash is by a factor of 2.25. However, the reasoning times do not always
corelate with the replication factor: on WatDiv-1B, METIS and 2PS3 were slower
than Hash and HDRF3, despite exhibiting smaller replication factors.

Workload Balance To investigate further, we show in Figure 1 the numbers
of derivations and the total size of partial messages processed by each of the
ten servers in the cluster. As one can see, partitioning the data into strongly
connected clusters can introduce a workload imbalance: the numbers of deriva-
tions and messages per server are quite uniform for Hash and, to an extent, for
HDRF3; in contrast, with 2PS3 and METIS, certain servers seem to be doing
much more work than others, particularly on WatDiv-1B and MAKG∗. Thus,
reducing communication seems to be important, but only to a point. For exam-
ple, 2PS3 reduces communication drastically on LUBM-8K, and this seems to
‘pay off’ in terms of reasoning times. On MAKG∗, the reduction in communica-
tion seems to lead to modest improvements in reasoning times, despite a more
pronounced workload imbalance. On WatDiv-1B, however, communication over-
head does not appear to be significant with any partitioning strategy, so the
workload imbalance is the main determining factor of the reasoning times.

Overall Performance In general, 2PS3 seems to provide a good performance
mix: unlike METIS, it can be implemented without placing unrealistic require-
ments on the servers used for partitioning; it can significantly reduce communi-
cation; and, while this can increase reasoning times due to workload imbalances,
such increases do not appear to be excessive. Thus, 2PS3 is a good alternative
to hash partitioning, which has been the dominant technique used thus far.
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Table 2. Partition & Reasoning

Method
Partitioning Stats [n=10] Reasoning Stats

Min (%) Max (%) Med (%) RF Time (s) Time (s) Messages (G)

LUBM-8K [1.10G triples]

Hash 10.00 10.00 10.00 1.60 530 17,400 71.67
METIS 9.24 10.66 9.98 1.19 15,300 12,580 15.44
HDRF3 9.35 10.47 10.00 1.43 590 15,740 46.05

2PS3 9.06 10.35 10.00 1.08 700 7,740 9.22

WatDiv-1B [1.09G triples]

Hash 10.00 10.00 10.00 2.48 520 1,870 8.95
METIS 9.70 10.35 10.00 2.16 15,100 2,690 4.54
HDRF3 10.00 10.00 10.00 2.48 590 1,850 8.95

2PS3 9.92 10.02 10.00 2.40 1,080 2,520 8.81

MAKG∗ [3.66G triples]

Hash 10.00 10.00 10.00 1.99 2,220 8,000 29.24
METIS Partitioning exhausted 784GB of memory
HDRF3 10.00 10.00 10.00 1.66 3,500 7,160 26.15

2PS3 9.91 10.06 10.00 1.67 3,640 6,870 24.70

8 Conclusion and Future Work

We have presented two novel algorithms for streaming partitioning of RDF data
in distributed RDF systems. We have compared our methods against hashing and
min-cut partitioning, which have been the dominant partitioning methods thus
far. Our methods are much less resource-intensive than min-cut partitioning, and
they are not significantly more complex than hashing. Particularly the 2PS3

method often exhibits better reasoning performance, thus contributing to the
scalability of distributed RDF systems. In our future work, we will aim to further
improve the performance of reasoning by developing ways to reduce imbalances
in the workload among servers. One possibility to achieve this might be to analyse
the datalog program before partitioning and thus identify workload hotspots.
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A Proofs for Section 5

To prove Proposition 1, we will need to reason about the state of the counters
Nk from the HDRF3 algorithm. Thus, in the rest of this appendix, we use N i

k to
refer to the value of Nk from Algorithm 1 after processing the i-th triple of G.

Lemma 1. For α > 1 and λ > 0, each run of Algorithm 1 on a graph G satisfies
the following property after processing the i-th triple of G:

max
k

N i
k −min

k
N i
k < Mλ, where Mλ = |G|

√
4α

nλ
+ max

r
|G+(r)|. (1)

Proof. We prove the claim by induction on the index i of the triple being pro-
cessed. For the induction base, the claim is clearly true for i = 0. For the in-
duction step, assume that property (1) holds after the i-th triple has been pro-
cess, and consider processing triple 〈si+1, pi+1, oi+1〉. If T (si+1) is defined, then
N i+1
k = N i

k for each server k, so (1) clearly holds. Otherwise, let k1 and k2 be the
servers such that N i+1

k1
and N i+1

k2
are minimal and maximal, respectively, among

all N i+1
k at step i+ 1. If N i

k2
is also maximal among all N i

k at step 1 and triple
〈si+1, pi+1, oi+1〉 is sent to a server different from k2, then property (1) clearly
holds at step i + 1. Thus, the only remaining case is when the triple is sent to
server k2. The scores for k1 and k2 are of the following form, for j ∈ {1, 2}:

Scorej = (CREP )j + λ

∑
kN

i
k

|G|
(CBAL)j

For convenience, let
∑
kN

i
k = S. We can bound Score1 as follows:

Score1 = (CREP )1 + λ
S

|G|
(CBAL)1

≥ λ S

|G|
(CBAL)1

=
λS

|G|

(
1− n

N i
k1

+ |G+(si+1)|
α|G|

)
Moreover, we can bound Score2 as follows, where we use the fact that the
definition of (CREP )2 clearly ensures (CREP )2 < 4:

Score2 = (CREP )2 +
λS

|G|
(CBAL)2

< 4 +
λS

|G|

(
1− n

N i
k2

+ |G+(si+1)|
α|G|

)
Triple 〈si+1, pi+1, oi+1〉 is sent to k2, so we have Score1 ≤ Score2. Combined
with the above bounds for Score1 and Score2, we observe the following.

λS

|G|

(
1− n

N i
k1

+ |G+(si+1)|
α|G|

)
< 4 +

λS

|G|

(
1− n

N i
k2

+ |G+(si+1)|
α|G|

)
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λS

|G|

(
−n

N i
k1

α|G|

)
< 4 +

λS

|G|

(
−n

N i
k2

α|G|

)

N i
k2 −N

i
k1 < 4

α|G|
nλ

|G|
S

Now N i
k2
−N i

k1
< S clearly holds at each step i, which ensures

N i
k2 −N

i
k1 < 4

α|G|
nλ

|G|
N i
k2
−N i

k1

.

We make the following observations.

(N i
k2 −N

i
k1)2 < 4

α|G|2

nλ

N i
k2 −N

i
k1 < |G|

√
4α

nλ

N i
k2 + |G+(si+1)| < N i

k1 + |G|
√

4α

nλ
+ max

r
|G+(r)|

N i+1
k2

< N i
k1 +Mλ

Finally, N i
k1

= N i+1
k1

since the triple is sent to server k2, so the last observation
proves our claim. ut

Proposition 1. Algorithm 1 produces a partition that satisfies |Gi| ≤ α |G|n for
each 1 ≤ i ≤ n whenever α and λ are selected such that

α > 1 + n
maxr |G+(r)|

|G|
and λ ≥ 4α

n
(
α−1
n −

maxr |G+(r)|
|G|

)2 .
Proof. :et α > 1 and λ be as stated in the proposition. Note that the condition
on α ensures

α− 1

n
− maxr |G+(r)|

|G|
> 0.

We now show that Mλ ≤ (α− 1) |G|n holds. Towards this goal, we make the
following observations:

λ ≥ 4α

n
(
α−1
n −

maxr |G+(r)|
|G|

)2
4α

λn
≤
(
α− 1

n
− maxr |G+(r)|

|G|

)2

√
4α

λn
≤ α− 1

n
− maxr |G+(r)|

|G|
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|G|
√

4α

λn
≤ |G|α− 1

n
−max

r
|G+(r)|

|G|
√

4α

λn
+ max

r
|G+(r)| ≤ (α− 1)

|G|
n

Now P = G1, . . . , Gn be the partition produced by Algorithm 1. Clearly,

we have mink |Gk| ≤ |G|n . Now consider an arbitrary server k. Property (1) of
Lemma 1 ensures |Gk| ≤ |G|/n+Mλ. Moreover, the condition on Mλ proved
above ensures

|Gk| ≤
|G|
n

+ (α− 1)
|G|
n

= α
|G|
n
.

This holds for every server k, which implies our claim. ut

B Proofs for Section 6

Proposition 2. Algorithm 2 produces a partition that satisfies |Gi| ≤ α |G|n for
each 1 ≤ i ≤ n whenever α is selected such that

α > 1 +
maxr |G+(r)|

|G|
.

Proof. For each community c, the following property holds at each point during
algorithm’s execution:

S(c) =
∑

r with C(r)=c

|G+(r)| (2)

To see this, note that S is initialised by setting S(cr) = |G+(r)| for each resource
r. Moreover, lines 21 and 22 clearly ensure that the property is preserved when
mapping C is updated in line 23.

We prove by induction that function AssignCommunities ensures the fol-
lowing inequality:

max
k

Nk −min
k
Nk ≤ (α− 1)

|G|
n
. (3)

For the induction base, all Nk are initialised to zero, so (3) holds after line 25.
For the induction step, assume that (3) holds before line 28 is evaluated for
some community c. Let k1 = arg minkNk and k2 = arg maxkNk, and let N ′k be
the updated values of Nk after line 28; we clearly have N ′k = Nk for all k 6= k1,
N ′k1 = Nk1 + S(c), and minkN

′
k ≥ minkNk. We have two possibilities.

– N ′k1 ≤ Nk2 . Then, maxkN
′
k = Nk2 and so the following condition holds,

where the induction assumption ensures the second inequality:

max
k

N ′k −min
k
N ′k ≤ max

k
Nk −min

k
Nk ≤ (α− 1)

|G|
n
.



20 T. Ajileye et al.

– N ′k1 > Nk2 . Then, maxkN
′
k = Nk1 + S(c). Moreover, the requirement on the

choice of α in our claim and the condition in line 20 of the algorithm ensure

that S(c) ≤ (α−1)|G|
n holds for each community c at any point in time during

an algorithm’s run. This, in turn, ensures the following property:

max
k

N ′k −min
k
N ′k = S(c) ≤ (α− 1)

|G|
n
.

Thus, (3) holds. In addition, at the end of function AssignCommunities, we

have minkNk ≤ |G|n because
∑
kNk = |G|. This, in turn, ensures

max
k

Nk ≤ min
k
Nk + (α− 1)

|G|
n
≤ α |G|

n
.

In the second phase, each triple 〈s, p, o〉 is assigned to T (C(s)). But then, (2)
clearly ensures |Gk| = Nk for each k, which implies our claim. ut


